Emotion Recognition from Speech: An Unsupervised Learning Approach

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emotion Recognition from Speech

This paper proposes the classification of emotions based on spectral features using the Gaussian Mixture Model as the classifier. The performance of the Gaussian Mixture Model has been evaluated for two types of databases – acted and reallife speech corpuses. The model has also been evaluated for the variation in its performance based on the speaker, gender of the speaker and the number of the ...

متن کامل

Machine Learning Approach for Emotion Recognition in Speech

This paper presents a machine learning approach to automatic recognition of human emotions from speech. The approach consists of three steps. First, numerical features are extracted from the sound database by using audio feature extractor. Then, feature selection method is used to select the most relevant features. Finally, a machine learning model is trained to recognize seven universal emotio...

متن کامل

An unsupervised deep domain adaptation approach for robust speech recognition

This paper addresses the robust speech recognition problem as a domain adaptation task. Specifically, we introduce an unsupervised deep domain adaptation (DDA) approach to acoustic modeling in order to eliminate the training–testing mismatch that is common in real-world use of speech recognition. Under a multi-task learning framework, the approach jointly learns two discriminative classifiers u...

متن کامل

Efficient Emotion Recognition from Speech Using Deep Learning on Spectrograms

We present a new implementation of emotion recognition from the para-lingual information in the speech, based on a deep neural network, applied directly to spectrograms. This new method achieves higher recognition accuracy compared to previously published results, while also limiting the latency. It processes the speech input in smaller segments – up to 3 seconds, and splits a longer input into...

متن کامل

Active learning for dimensional speech emotion recognition

State-of-the-art dimensional speech emotion recognition systems are trained using continuously labelled instances. The data labelling process is labour intensive and time-consuming. In this paper, we propose to apply active learning to reduce according efforts: The unlabelled instances are evaluated automatically, and only the most informative ones are intelligently picked by an informativeness...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computational Intelligence Systems

سال: 2020

ISSN: 1875-6883

DOI: 10.2991/ijcis.d.201019.002